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Example of self-averaging in three dimensions: Anderson localization of electromagnetic waves
in random distributions of pointlike scatterers
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A simple yet realistic theoretical model is used to study Anderson localization of electromagnetic waves in
three-dimensional disordered dielectric media. The preliminary results presented in our previougvpaper
Rusek, A. Ortowski, and J. Mostowski, Phys. ReVbE 4122(1996] are substantially extended and a sound
physical interpretation is proposed. Very striking universal properties of the spectra of random matrices de-
scribing the scattering from a collection of randomly distributed pointlike scatterers are discovered. The
appearance of the band of localized electromagnetic waves, emerging in the limit of an infinite system, is
numerically observed.S1063-651X%97)03111-5

PACS numbgs): 42.25.Fx, 42.25.Hz, 72.10.Fk, 78.20.Ci

I. INTRODUCTION demonstration that strong localization could be possible in
3D random dielectric structures.
Recently three-dimension&D) random dielectric struc- A better understanding of the Anderson localization of

tures with a typical length scale matching the wavelength oklectromagnetic waves requires sound theoretical models.
electromagnetic radiation have attracted a great deal of atteisuch models should be based directly on the Maxwell equa-
tion, both in the microwave and in the optical part of thetions and they should be simple enough to provide calcula-
spectrum. Propagation of electromagnetic waves in thesgons without too many approximations. In this paper we
structures resembles the properties of electrons in disorderédvestigate a simple yet reasonably realistic coupled-dipole
semiconductors. Therefore, many ideas concerning transpamodel describing the scattering of electromagnetic waves
properties of light and microwaves in such media exploit thefrom a collection of randomly distributed pointlike dielectric
theoretical methods and concepts of solid-state physics thaiarticles. We restrict ourselves to the study of the properties
have been developed over many decades. One of these cQjf the stationary solution€(r,t)=Rd &(r)e '] of the

cepts is electron localization in noncrystalline systems suclyjaxwell equations. Consequently, the polarization of the
as amorphous semicor?ductors.o.r disorglered insu.lato.rs. Asedium is considered to be the oscillatory function of time
showr) by Andgrsorﬁl], in a sufflc!ently disordered |nf|n'|te B(r,t)=RdP(F)e"“]. Calculating and analyzing spectra
material an entirdand of electronic states can be spatially 4t certain random matrices, we observe numerically the ap-
localized. In fact, the Anderson transition may be viewed a)earance of the continuobsndof localized electromagnetic
a transition from particlelike behavior described by the dif-waves. Consequences for Anderson localization of electro-
fusion equation to wavelike behavior, which results in Iocal—magnetic waves in 3D disordered dielectric media are dis-
ization by interference. Indeed, the most plausible explanasussed.
tion of the Anderson localization is based on the interference The main advantage of the presented approach is that we
effects in multiple elastic scatteriri@]. do not need to perform an average over the disorder. Gener-
As interference is the common property of all wave phe-ally speaking, there is a temptation to apply averaging pro-
nomena, the quest for some analogs of electron localizationedures as soon as “disorder” is introduced into the model.
for other types of waves has been undertaken and many geAveraging of the scattered intensity over some random vari-
eralizations of electron localization exist, especially in theable leads to a transport theory of localizat{d®—-18. But
realm of electromagnetic wavg3—6]. So-called weak local- “there is a very important and fundamental truth about ran-
ization of electromagnetic waves manifesting itself as endom systems we must always keep in mind: no real atom is
hanced coherent backscattering is presently relatively welhn average atom, nor is an experiment done on an ensemble
understood theoreticallj7—9] and established experimen- of samples”[19]. What we really need to properly under-
tally [10-13. The question is whether interference effects instand the existing experimental results are probability distri-
3D random dielectric media can reduce the diffusion conbutions, not averages. Indeed, to perform any meaningful
stant to zero leading to strong localization. The crucial paaveraging procedure the assumption of infinite medium is
rameter is the mean free pdthwhich should be rather short needed. On the other hand, in all experiments we can study
[13-19. It seems that a suspension of TiGpheres in air is finite media only. Within our approach we can see how lo-
the system in which the shortdstalues for visible light may calization “sets in” for an increasing number of scatterers
be realized in practice. However, despite the observation of by studying the probability densities of eigenvalues of some
scale dependence of the diffusion constant in such medigandom matrices.
which may be considered as a reasonable indication of This paper is organized as follows. In Sec. Il we recall the
Anderson transition, there still is no convincing experimentalpoint-scatterer approximation and analyze the basic ideas of
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the coupled-dipole model that serves as a theoretical tool imherefore,¢ is a function of frequency and physical pa-
our investigations. We arrive at the system of linear equarameters describing the spheres such as raRliasd dielec-
tions determining the polarization of the medium for a giventric constante. Thus each choice ap is in fact a choice of
incident wave. In Sec. Il eigenvalues of the random matrixscatterers.

corresponding to this set of equations are studied. Self- The field acting on thath dipole

averaging of the lowest eigenvalue emerging in the limit of

an infinite medium is discovered numerically. This phenom- - 0y, L. eiklra=ry|
enon is illustrated graphically and observed features are com- ENra)=E0(ry)+ ga VXVX pbm (4)
pared with one-dimensional results. Note that in one dimen- a 'b

sion the possibility of self-averaging can be proved, — . .
analytically.pln Sec. )I/V a sound physi?:al%nterpretatior?of the'S the sum of some _|nC|dent free field”), which obeys the
obtained results is proposed. Self-averaging of the Iowe#ax"\ije." (Iaquali:ons_ln va;puulrzn,zandt Wéwei sFt:gttered t)y all
eigenvalue is considered as the signature of the appearangg‘e_r Ipoles. ow, Inserting d2) Into q.(4), LIS easy to.
of the band of localized electromagnetic waves, emerging iffPtain the system of linear equations determining the field
the limit of infinite system. It can be understood as a counacting on each dipole’(r,) for a given incoming wave
terpart of Anderson transition in solid-state physics. We fin-g(o)(Fa) [23]:
ish with some comments and conclusions in Sec. V.
> Moy (rp) =E(ry). ®)
Il. POINT-SCATTERER APPROXIMATION b

Usually localization of light is studied experimentally in s \we solve it and use again E() to find 5a, then we are
microstructures consisting of dielectric spheres with diam-pje 1o find the electromagnetic field everywhere in space. A
eters and mutual distances being comparable to the Wav@imilar integral equation relating the stationary outgoing
length[15]. On the other hand, the theory of multiple scat-\yaye to the stationary incoming wave is known in the gen-
tering of electromagnetic waves by dielectric particles isgrg) scattering theory as the Lippmann-Schwinger equation
tremendously simplified in the limit of point scatterers. In [24]. A way of dealing with localized states in this formalism

principle, this _approximation is justified only when the sizeig g solve Eq.(5) as a homogeneous equation, i.e., for the
of the scattering particles is much smaller than the wave:

T . -t 0) >
length. In practical calculations, however, many muItipIe—Incomlng waves®(ry) equal to zerd23).
scattering effects can be obtained qualitatively for coupled
electrical dipoles. Examples are universal conductance fluc- IIl. SELF-AVERAGING

tuations[20], enhanced backscatteringl], and dependent  pgfectly localized waves exist only infinite systems of

scattering 22]. What really counts for localization is mainly dipoles[23]. To illustrate the appearance of the band of lo-

the scattering cross section and not the bare size of the scaly;i,aq electromagnetic waves, emerging in the limit of infi-

terer. Therefore, trying to understand the pfoblem, We rehite system, we have to study the propertiefirite systems
place the dielectric spheres located at the paigtsy single  for an increasing number of dipold$ (while keeping the

electric dipoles density constant For each distribution of the dipoles,
placed randomly inside a sphere with the uniform scaled
P()=D pad(F—ra), 1) der?sityn=1 d.ipole peLwave!ength cubed we have.diago—
a nalized numerically thé/ matrix from Eq.(5) and obtained
the lowest eigenvalue
with properly adjusted scattering properties.
To use safely the point dipole approximation it is essential A($)=min|\;(¢)|. (6)
to use a representation for the scatterers that fulfills the op- i
tical theorem rigorously and conserves energy in the scatter-
ing processes. These requirements give the following form OI
the coupling between the dipole moment and the electri r

he resulting probability distributionP 4(A), calculated
om different distributions oN dipoles, is normalized in the

field incident on the dipol§23]: standard wayfdAP ,(A)=1. Let us now compare the sur-
face plots ofP 4(A) (treated as a function of two variables
> eb_q1. and A) calculated for systems consisting bf=100 and
§ik3pa= 5 "(ra), (2 1000 dipoles. They are presented in Figs. 1 and 2, respec-

tively. In addition, in Figs. 3 and 4 we provide corresponding

) ] contour plots. It is seen from inspection of all these plots
wherek=w/c is the wave number in vacuum. To get somenat for increasing system siZén our case it increased
insight into the physical meaning of the paramegefrom 10)'3=2 timed, at some¢ the probability distribution
Eq. (2) let us observe that it is directly related to the total P,(A) apparently moves towards the=0 axis and simul-
scattering cross sect?om of an individual dielectric sphere taneously its variance decreases. This tendency is easily
represented by the single dipdl23]: seen, e.g., for values | that are close ter. Our numeri-
cal investigations indicate that in the limit of an infinite me-
dium, the probability distributiof? 4,(A) tends to thes func-
tion

3
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o o v FIG. 3. Contour plot corresponding to Fig. 1.

Y averaging” and the random process has in fact become de-
terministic. Knowledge of the average then provides knowl-
FIG. 1. Surface plot of the probability distributidds(A) cal- ~ edge about “almost every” individual realization of the
culated for 10 systems oN=100 dipoles distributed randomly in random system. This property implies that the average value
a sphere with the uniform density=1 sphere per wavelength applies toevery singlerealization of the system, except for a

cubed. few special onegwith measure zeno This means that for
_ almost any random distribution of the dipolé§, the equa-
|\|1|m Py(A)=8(A) for |¢|> e () tion \;(#)=0 holds. Therefore, the corresponding eigenvec-

tor £ (r,) of the M matrix is a nonzero solution of the sys-
We have some numerical evidence that this fact is a generéém of linear equationgs) for the incoming waveé(o)(Fa)
property ofM matrices, not restricted to the considered caseequal to zero. Thus a localized wave exi28].
of one dipole per wavelength squared=1 [although the In three dimensions, proofs of self-averaging are rare and
parameterg,, from Eq. (7) certainly may depend on]. Of  in most cases quantities are not self-averadiag]. For
course we could justify Eq7) by a more orthodox approach waves propagating in one-dimensional random systems
based on a version of the finite-size scaling analysis thatmeaning that two out of three dimensions are translationally
leads, however, to an analogous conclugiaf. invariant and only the third is randgrself-averaging can be

It follows from Eq. (7) that in the limitN— o the distri- Qemonstrated mathematically. For one-dimensional systems
bution functionP 4(A) has only one value for which it is it was shown that for “almost any” energy or frequency an
nonzero. The quantityA(¢) at |¢|>d. is then “self-  eigenfunction decays exponentially in space for almost any
realization of the disordef27,2§. This fact is also unam-
biguously confirmed within the one-dimensional version of
our model. In Figs. 5 and 6 we present one-dimensional
counterparts of Figs. 1 and 2. It is easily seen from inspec-
tion of these figures that Eq7) is satisfied also for systems

1.0 —

0.9

0.8

0.7

7k 7T n/\ i 5 LA il
0.1 E‘itgab %
0.0 N G
T3 -2 1 0 1 2 3

FIG. 2. Same as in Fig. 1, but for 1Gystems ofN=1000
dipoles. FIG. 4. Contour plot corresponding to Fig. 2.
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Therefore, an entireontinuous bandf spatially localized
electronic states appears. Anderson localization occurs when
this happen$29].

Similarly, it is reasonable to expect that in the case of
infinite and random collection of dielectric particles there
can exist a band of localized electromagnetic waves corre-
sponding to a continuous region of frequenaiesThis anal-
ogy allows us to elaborate a physical interpretation of the
results obtained with the coupled-dipole model used. Let us
now apply our model to a system of identical dielectric
spheres with given radR and dielectric constants w) lo-
cated randomly with uniform physical density First let us
observe that in this case the parametefrom Eqg. (2) re-
mains a function of the frequency, i.ep=¢(w). On the
other hand, as pointed out before, Ef). holds not only for
n=1 but for a whole range afi and therefore, for fixed,,
for a range of frequencies. Thus the values o, should
be now regarded as functions af. Therefore, localized
waves occur in almost any realization of the 3D random
medium under consideration {fp(w)|> ¢e(w). This in-

P, ()

FIG. 5. Surface plot of the probability distributidn,(A) cal-  equality determines a continuous region of frequencies
culated for 16 systems oN =100 one-dimensional dipoles distrib- corresponding to the band of localized waves. Indeed, after
uted randomly with the density=1 slab per wavelength. choosing a point from this region a localized wave of fre-

quency(arbitrarily neaj w exists in almost any random dis-

consisting of one-dimensional pointlike scatterers. Note thatribution of the scatterers.
apparently¢.=0 in this case. We see from Eq43) and(7) that the total scattering cross
section of individual particlesr must exceed some critical
value o= o(¢) before localization will take place in the
limit N—<o. This fact is in perfect agreement with the scal-

Electronic states in solids are usually either extended, byng theory of localizatiorh30]: In 3D random media a certain
analogy with the Bloch picture for crystalline media, or lo- critical degree of disorder is needed for localization. More-
calized aroundsolatedspatial regions such as surfaces andover, our preliminary calculations indicate that the value of
impurities. However, in the case ofsafficiently disordered k?c ¢ may decrease with, but slowerthann™2. Using the
system a countable set discreteenergies corresponding to Rayleigh expression for the total scattering cross sectioh
localized states becomes dense in some finite interval. Bug dielectric sphere with radiuR and dielectric constan¢
physically speaking, it is impossible to distinguish betweer(31],
the allowed energies, which may be arbitrarily close to each
other, and the spectrum is always a coarse-grained object.

IV. ANDERSON LOCALIZATION
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we conclude that in the long-wavelength limit the system of
dielectric spheres distributed with constant density
n=k3n/(2)* will be out of the localization regime. On the
other hand, in the limit of small wavelengths, the propaga-
tion of light is ruled by the laws of geometrical optics and
the point-scatterer approximation we use becomes invalid.
Therefore, our results seem to agree with the common belief
(see, e.g14,15) that in three-dimensional media Anderson
localization of light is possible only in a certain frequency
window.

By analogy with the electron case, the phenomenon of
Anderson localization of electromagnetic waves should
manifest itself as an inhibition of the transmission in a spa-
tially random dielectric medium. We have already some nu-
merical evidence that it is actually true in the case of a one-
dimensional system consisting of randomly distributed
dielectric slabs. The validity of this connection in the con-
sidered three-dimensional model would attribute a sound in-
terpretation and clear physical meaning to the continuous

FIG. 6. Same as in Fig. 5, but for 10 systems\of 1000 one-  region of frequencies corresponding to localized waves. We
dimensional dipoles. expect that for each poirnd from this region, incident waves
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with frequencyw will be totally reflected by almost any sions was demonstrated. A connection between this phenom-

random distribution of the spheré§ with scattering proper- €non and a dramatic inhibition of the propagation of electro-
ties ¢(w). This problem will be addressed in detail else- magnetic waves in a spatially random dielectric medium has
where. been sketched. It can be understood as a counterpart of
Anderson transition in solid-state physics. Being aware of
V. SUMMARY differences between electrons and photons, we discussed
briefly the influence of the long-wavelengtRayleigh limit
In this paper we have further developed and refined &f elastic scattering of electromagnetic waves on results ob-
quite realistic coupled-dipole model describing scattering okained within our model.

electromagnetic waves by a disordered dielectric medium. Its

relative simplicity allowed us to discover some features of

the Anderson .Iocal_ization of eIectromagnet?c waves in 3D ACKNOWLEDGMENTS

dielectric media without using any averaging procedures.

Within our theoretical approach one can easily see how lo- A.O. is grateful to Roy Glauber for his hospitality at Har-
calization sets in for increasing system size. Very strikingvard University. We acknowledge the Interdisciplinary Cen-
universal properties of the spectra of random matrices deter for Mathematical and Computational Modeling of War-
scribing the scattering from a collection of randomly distrib-saw University for providing us with their computer
uted pointlike scatterers have been observed. Self-averagingsources. This investigation was supported in part by the
of the lowest eigenvalue emerging in the limit of an infinite Polish Committee for Scientific ReseardiKBN) under
medium has been discovered numerically. The appearance Grant No. 2 PO3B 108 12 and by the National Science Foun-
the band of localized electromagnetic waves in three dimendation under Grant No. INT-90-23548.

[1] P. W. Anderson, Phys. Re®09, 1492(1958. [21] M. B. van der Mark, M. P. van Albada, and A. Lagendijk,
[2] M. Kaveh, inAnalogies in Optics and Micro Electroni¢Ref. Phys. Rev. B37, 3575(1988.
[32]), pp. 21-34. [22] B. A. van Tiggelen, A. Lagendijk, and A. Tip, J. Phys.: Con-
[3] S. John, Phys. Rev. Lets3, 2169(1984). dens. Matte2, 7653(1990.
[4] P. W. Anderson, Philos. Mag. B2, 505 (1985. [23] M. Rusek, A. Orfowski, and J. Mostowski, Phys. Rev5E
[5] S. John, Phys. Rev. Leth8, 2486(1987). 4122(1996.
[6] Photonic Band Gaps and Localizatiodol. 308 of NATO Ad- [24] L. I. Shiff, Quantum Mechanic§McGraw-Hill, New York,
vanced Study Institute, Series B: Physieglited by C. M. 1968.
Soukoulis(Plenum, New York, 1998 [25] A. Lagendijk and B. A. van Tiggelen, Phys. Repr0, 143

[7] E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett. (1996
56, 1471(1986. T .
- [26] A. Ortowski and M. RuseKunpublishedl
[8] M. J. Stephen and G. Cwillich, Phys. Rev.38, 7564(1986. [27] H. Furstenberg, Trans. Am. Math. Sa08, 377 (1963.

[9] F. C. MacKintosh and S. John, Phys. Rev3B 1884(1988. .
[10] Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. B 831(1984.  20) F- Deylon, H. Kunz, and B. Souillard, J. Phys. ¥6, 25

[11] M. P. V. Albada and E. Lagendijk, Phys. Rev. Lei6, 2692 (1983. ,

(1985 [29] B. Souillard, inChance and MatterProceedings of the Les
[12] P.-E. Wolf and G. Maret, Phys. Rev. LeB5, 2696(1985. Houches Summer School of Theoretical Physics, Session
[13] S. John, Phys. Rev. Bl ’304(1985. ’ XLVI, Les Houches, 1986, edited by J. Souletie, J. Vanni-
[14] S. John, inAnalogies in Optics and Micro Electronidsef. menus, and R. StoréNorth-Holland, Amsterdam, 1987pp.

[32]), pp. 105-116. 305-382.

[15] S. John, Phys. Toda44 (5), 32 (1997). [30] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
[16] W. Gadze, J. Phys. A2, 1279(1979. Ramakrishnan, Phys. Rev. Le#2, 673(1979.

[17] W. Gaze, Philos. Mag. B43, 219(1981)). [31] J. D. JacksonClassical ElectrodynamicéWiley New York,
[18] D. Vollhardt and P. Wifle, Phys. Rev. B2, 4666(1980. 1962.

[19] P. W. Anderson, Rev. Mod. Phys0, 191 (1978. [32] Analogies in Optics and Micro Electronicedited by W. van

[20] P. A. Lee and A. D. Stone, Phys. Rev. L, 1622(1985. Haeringen and D. Lensti@Iluwer, Dordrecht, 1990



